My solutions to Week 5 assignment questions.
Helpful links : https://github.com/jcgillespie/Coursera-Machine-Learning/tree/master/ex4
sigmoidGradient.m (#3):
nnCostFunction(#1. #2. #4. #5):
Helpful links : https://github.com/jcgillespie/Coursera-Machine-Learning/tree/master/ex4
sigmoidGradient.m (#3):
function g = sigmoidGradient(z) %SIGMOIDGRADIENT returns the gradient of the sigmoid function %evaluated at z % g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function % evaluated at z. This should work regardless if z is a matrix or a % vector. In particular, if z is a vector or matrix, you should return % the gradient for each element. g = zeros(size(z)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the gradient of the sigmoid function evaluated at % each value of z (z can be a matrix, vector or scalar). sigmoidZ = zeros(size(z, 1), size(z, 2)); for i=1:size(sigmoidZ, 1) for j=1:size(sigmoidZ, 2) sigmoidZ(i,j) = sigmoid(z(i,j)); end end oneMinus = 1-sigmoidZ; for i=1:size(g,1) for j=1:size(g,2) g(i,j) = sigmoidZ(i,j)*oneMinus(i, j); end end % ============================================================= end
nnCostFunction(#1. #2. #4. #5):
function [J grad] = nnCostFunction(nn_params, ... input_layer_size, ... hidden_layer_size, ... num_labels, ... X, y, lambda) %NNCOSTFUNCTION Implements the neural network cost function for a two layer %neural network which performs classification % [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ... % X, y, lambda) computes the cost and gradient of the neural network. The % parameters for the neural network are "unrolled" into the vector % nn_params and need to be converted back into the weight matrices. % % The returned parameter grad should be a "unrolled" vector of the % partial derivatives of the neural network. % % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices % for our 2 layer neural network Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ... hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ... num_labels, (hidden_layer_size + 1)); % Setup some useful variables m = size(X, 1); % You need to return the following variables correctly J = 0; Theta1_grad = zeros(size(Theta1)); Theta2_grad = zeros(size(Theta2)); % ====================== YOUR CODE HERE ====================== % Instructions: You should complete the code by working through the % following parts. % % Part 1: Feedforward the neural network and return the cost in the % variable J. After implementing Part 1, you can verify that your % cost function computation is correct by verifying the cost % computed in ex4.m % % Part 2: Implement the backpropagation algorithm to compute the gradients % Theta1_grad and Theta2_grad. You should return the partial derivatives of % the cost function with respect to Theta1 and Theta2 in Theta1_grad and % Theta2_grad, respectively. After implementing Part 2, you can check % that your implementation is correct by running checkNNGradients % % Note: The vector y passed into the function is a vector of labels % containing values from 1..K. You need to map this vector into a % binary vector of 1's and 0's to be used with the neural network % cost function. % % Hint: We recommend implementing backpropagation using a for-loop % over the training examples if you are implementing it for the % first time. % % Part 3: Implement regularization with the cost function and gradients. % % Hint: You can implement this around the code for % backpropagation. That is, you can compute the gradients for % the regularization separately and then add them to Theta1_grad % and Theta2_grad from Part 2. % % Ex1 X = [ones(m, 1) X]; Y = zeros(size(y, 1), num_labels); for i=1:size(Y, 1) Y(i, y(i)) = 1; end a2 = zeros(hidden_layer_size, m+1); a3 = zeros(num_labels, hidden_layer_size+1); a2 = (Theta1*X'); z2 = a2; a2 = sigmoid(a2); a2 = a2'; a2WithoutOnes = a2; a2 = [ones(size(a2, 1), 1) a2]; a3 = a2*Theta2'; a3 = sigmoid(a3); predictions = a3; logPredictions = log(predictions); tempLeftProd = zeros(size(a3, 1), 1); tempRightProd = zeros(size(a3, 1), 1); oneMinusY = 1-Y; oneMinusPredictions = 1-predictions; for i=1:size(a3, 1) tempLeftProd(i) = logPredictions(i,:)*Y(i,:)'; tempRightProd(i) = log(oneMinusPredictions(i,:))*(oneMinusY(i,:)'); end brackets = tempLeftProd+tempRightProd; sumAllExamples = sum(brackets); J = (-1/m)*sumAllExamples; % Ex2 regularizationAdd = 0; regAddLeft = zeros(hidden_layer_size, 1); for i=1:hidden_layer_size for j=1:size(Theta1, 2)-1 regAddLeft(i) = regAddLeft(i) + Theta1(i, j+1)^2; end end regAddRight = zeros(num_labels, 1); for i=1:num_labels for j=1:size(Theta2, 2)-1 regAddRight(i) = regAddRight(i) + Theta2(i, j+1)^2; end end regularizationAdd = (lambda*(sum(regAddLeft)+sum(regAddRight)))/(2*m); J = J+regularizationAdd; % Ex4 Delta1=0; Delta2=0; Theta1WithoutBias = Theta1(:, 2:end); Theta2WithoutBias = Theta2(:, 2:end); for t=1:m a1 = X(t, :)'; z2 = Theta1*a1; a2 = [1; sigmoid(z2)]; z3 = Theta2*a2; a3 = [sigmoid(z3)]; d3 = a3-Y(t, :)'; d2 = Theta2WithoutBias'*d3 .* sigmoidGradient(z2); %d2 = d2(2:end); % No need to do that. Theta2WithoutBias % and z2(we add bias to a2, not z2) have % already taken care of that Delta2 = Delta2 + d3*a2'; Delta1 = Delta1 + d2*a1'; end Theta1_grad = Delta1/m; Theta2_grad = Delta2/m; % Ex5 - regularization Theta1_grad(:, 2:end) = Theta1_grad(:, 2:end)+(lambda/m)*Theta1WithoutBias; Theta2_grad(:, 2:end) = Theta2_grad(:, 2:end)+(lambda/m)*Theta2WithoutBias; % ------------------------------------------------------------- % ========================================================================= % Unroll gradients grad = [Theta1_grad(:) ; Theta2_grad(:)]; end
No comments:
Post a Comment